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ABSTRACT  

The growing demand for thermal imaging sensors and cameras has focused attention on the need for larger volumes 
of lower cost optics in this infrared region. A major component of the cost of thermal imaging lenses is the 
germanium content.  As40Se60 was developed as a moldable, germanium-free chalcogenide glass that can serve as a 
low cost alternative to germanium and other infrared materials.  This material also has promising characteristics for 
improved optical performance, especially with regard to reduced thermal sensitivity.  As40Se60 has found acceptance 
as a material to be diamond turned or polished, but it is only now emerging as a legitimate candidate for precision 
glass molding.  This paper will review chalcogenide molding and characterize As40Se60 for widespread use in high-
volume thermal imaging optics.  The relative advantages and disadvantages of As40Se60 as compared to other 
chalcogenide glasses will also be discussed. 
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1. INTRODUCTION 

Over the past decade, the prices for thermal imaging sensors have dramatically decreased through uncooled 
microbolometer technology. The resulting cost savings has significantly increased the demand for thermal imagers 
and expanded their applications in the commercial market.  This in turn has increased the demand for longwave 
infrared (LWIR) lenses, and driven the search for high volume, low cost methods of manufacturing LWIR lenses.  
The technological roadmap for thermal imaging systems is following the same path that visible imaging systems 
have followed in the recent past; from large SLR type cameras to small handheld cameras and finally to cell phone 
camera systems. The enabling optical technology for the visible region was injection molding of plastic lenses.  
Although there are many plastic materials to choose from for the visible spectrum, these polymers absorb longwave 
infrared light, and are therefore inadequate for thermal applications operating in the LWIR (8-12µm) band.  
Although crystalline materials such as Ge, ZnS, and ZnSe, transmit well in the LWIR band, they are not moldable 
and therefore they are not well-suited to high-volume, low-cost production.  In recent years, chalcolgenide materials 
have grown in popularity for LWIR lens applications.  The moldability of chalcogenide glass uniquely qualifies it 
for the high-volume demand of commercial longwave IR applications. 

Although precision glass molding (PGM) of chalcogenides has already started the trend towards low cost optics in 
the longwave infrared, the most commonly used chalcogenides in PGM to date have been compositions containing 
germanium, such as Ge28Sb12Se60 (Vitron IG5) and Ge22As20Se58 (Umicore Gasir 1).  The push for lower cost 
materials and improved optical performance has caused heightened interest in the germanium-free composition 
As40Se60 (Vitron IG6).  However, this material’s availability, manufacturability, and safety must be assessed, all of 
which could limit its upside potential.  This paper will discuss the relative advantages and disadvantages of As40Se60 
as compared to the germanium-containing Ge28Sb12Se60. 
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1.2. History of Chalcogenide Glass 

Chalcogenide glasses are amorphous compounds based on the chalcogen elements: sulfur (S), selenium (Se), or 
Tellurium (Te). One or more of the chalcogens is usually paired with at least germanium (Ge) or arsenic (As) for 
chemical stability. Other elements such as antimony (Sb) may be added to the composition to achieve desired 
properties. These glasses transmit primarily in the mid-wave infrared (MWIR) and longwave infrared (LWIR) 
wavebands, making them suitable for thermal imaging applications.  As opposed to traditional crystalline lens 
materials for LWIR, such as Ge, ZnS, ZnSe, the moldability of chalcogenide glass uniquely qualifies it for the high-
volume demand of commercial applications. 

1.2.1. Early Use for MWIR Applications 

The earliest published work on non-oxide glasses was a paper written by Carl Schulz-Sellack in 1870.2,3 His work 
showed that As40S60 chalcogenide glass was transparent in the infrared region. There was very little further research 
done on the subject until 1950 when the same glass composition was investigated by Rudolf Frerichs and the results 
were published in a paper titled “New optical glasses transparent in infrared up to 12µm.”2,3 Frerichs’ paper renewed 
interest in this novel material and other groups began to research the glass. In the 1950s, As40S60 began being 
produced on an industrial scale and products utilizing the material were manufactured. Servo Corporation not only 
manufactured the glass, but also was the first to introduce a product that was made with this glass. The product was 
used for the detection of overheated wheel bearings on railroad cars.2  The main appeal of chalcogenide glass is its 
infrared transparency, which makes it ideal for thermal applications.  

1.2.2. Development for LWIR Applications 

The transmission window of sulfide glasses only extends to about 11µm, limiting it to MWIR applications. Other 
materials needed to be investigated in order to produce a glass with LWIR transparency. In his book, Chalcogenide 
Glasses for Infrared Optics, Hilton discusses in detail how a program at Texas Instruments (TI) was funded by the 
U.S. Air Force in 1966 to research infrared materials for optics. Previous research on chalcogenides had focused on 
electronic rather than optical properties. Hilton states that the best composition, TI 1173 (Ge28Sb12Se60), was 
selected from the germanium-antimony-selenium system. Later research programs also investigated glasses in the 
germanium-arsenic-selenium system. TI produced small quantities of systems using its TI 1173 glass that were used 
in Air Force and Navy aircraft.2 In 1977, Hilton left TI and soon founded a new company, Amorphous Materials, 
Inc. (AMI). Since then, they have developed and produced several “AMTIR” glasses of different compositions. 
Hilton notes that “during the period from 1950 to [2010], only three compositions have been produced in ton 
quantities: arsenic trisulfide, TI 1173 (Amtir 3), and TI 20 (Amtir 1).”2 

1.3. Chalcogenide Composition Landscape 

The significance of this last point is that out of the many compositions that have been developed for research 
purposes, only a select few have met the practical requirements of optical performance and manufacturability 
making them suitable for production.  To highlight this point, Table 1 below shows most of the common 
chalcogenide compositions available from primary glass suppliers. 
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Property

Wavelength Range (µm)

Index @ 10µm

Wavelength Dispersion
do /da. (8 -12µm)

Thermal Constant

GezsSb12$e60

1 -16

(typical absorption peak at 12.5pm)

2.6023

1 -18

2.7777

-3.67 x 10-3 -2.77 x 10-3

-7nill Oc
dn/dT (x10-6/°C)

Tg (°C) 285 185

CTE (x10-6/°C) 14.5 20.9

Density (g /cm3) 4.68 4.63

Hardness (Vickers) 189 142

 

 

The advantages of chalcogenides over crystalline materials such as germanium have been well documented.  
However, the choice between the various chalcogenide compositions has been largely subjective, based on different 
glass suppliers or molders marketing their particular product offerings.  As discussed in the previous section, the 
arsenic-free Ge28Sb12Se60 is a good baseline material for benchmarking the germanium-free As40Se60 composition.   
As such, the advantages and disadvantages of As40Se60 glass relative to Ge28Sb12Se60 will be the focus of the 
remainder of this paper. 

 

 

2. GLASS CHARACTERIZATION AND QUALIFICATION 

The high volume production PGM process is critically dependent on a thorough understanding of important glass 
characteristics, and ensuring that these remain constant from batch to batch. Qualification of a new glass therefore 
involves measuring these key characteristics on glass from several batches or boules. Detailed descriptions and 
explanations of the techniques used for glass characterization can be found in a previous paper in reference 4, “An 
Investigation of Material Properties for a Selection of Chalcogenide Glasses for Precision Glass Molding.”. 
Although not all are discussed in detail in this paper, Table 2 shows a summary of the properties measured during 
qualification of As40Se60 compared to Ge28Sb12Se60. 

Table 2 - Key Properties of Select Chalcogenides:  Arsenic-free Ge28Sb12Se60 and Germanium-free As40Se60 
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2.2.4. Hardness 

The microhardness of the chalcogenide glasses was measured with a Vickers diamond indenter.  While the values 
reported for both glasses in Table 2 are lower than traditional crystalline materials, hard carbon (diamond-like) 
coatings have been developed to improve the material’s durability when required for certain applications. As40Se60 is 
significantly softer than Ge28Sb12Se60, while this does not have a significant impact on the molding performance, it 
does have ramifications across the supply chain. Softer preforms are much more difficult to manufacture and handle 
and finished lens are easier to scratch and damage and more difficult to coat. The cost savings associated with 
removing the Ge, can be offset by increased processing costs and lower yields.  

2.3. Intangible Considerations for High Volume Production 

On the surface, As40Se60 offers the potential for several advantages over Ge28Sb12Se60, both in performance and 
reduced cost from the absence of germanium.  In practice, however, there are intangible limitations to realizing these 
advantages. 

First, the cost of a germanium-free composition is theoretically less expensive, but the supply chain must be 
established and stabilized for high volumes as has been achieved for Ge28Sb12Se60.  Since As40Se60 is in the early 
stages of use compared to Ge28Sb12Se60, these cost savings have yet to be realized by primary glass suppliers. 

Another consideration is that arsenic-containing compounds must be carefully handled in any manufacturing 
environment, and appropriate safety precautions must be implemented.  This can lead to increased overhead costs in 
manufacturing. 

Finally, lower press temperatures may predict longer mold lifetimes and better yields, but those yields must be 
validated through process optimization, and they must actually be maintained in volume production. 

Such reservations may seem overly cautious, but because it is difficult to quantify their true impact on cost, they are 
easily overlooked or disregarded. 

3. MOLDING QUALIFICATION RESULTS 

After careful characterization of the As40Se60 material, trial lenses were pressed with preliminary optimization of 
molding conditions.  Figure 8 shows an image of 2 of the molded lenses.   

 
Figure 8 - Image of Successfully Molded As40Se60 Lenses 
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Lens Material

Lens 1 Lens 2 On -axis

Nominal MTF

HFOV Corner

Min MTF over -40 to 85 °C

On -axis HFOV Corner

1 Ge28SbuSeec, Gez8Sb1ZSe4_ 42% 40% 38% 19% 13% 9%

2 Ge28Sb12Se60 Ge28Sbi2Se5,_. 42% 39% 37% 22% 17% 16%

3 Ge2BSbuSe60 Ge28SbuSeç, 42% 39% 37% 23% 15% 13%

4 Ge28SbuSeez Ge2BSb12Sef.,_, 42% 39% 38% 16% 15% 16%

5 As40Se6c, As44Se60 42% 41% 39% 39% 36% 35%

6 As40Se60 Ge28Sb12Se5, 42% 40% 39% 33% 27% 27%

7 Ge28SbuSe60 As40Se60 42% 39% 37% 34% 27% 27%

8 Ge Ge28SbuSee,:, 42% 40% 39% 7% 0% 0%

9 ZnSe Ge26SbuSe50 42% 36% 34% 24% 15% 14%

10 ZnSe As4ASe 41% 36% 33% 35% 29% 28%

 

 

4. THERMAL DESIGN STUDY  

Because one of the key differences between As40Se60 and Ge28Sb12Se60 is the thermal sensitivity (dn/dT), it is 
important to determine the performance impact of this difference in a practical design scenario.  It has been shown 
in a previous paper by the present authors that first-order approximations in athermalization theory are inadequate 
for accurately determining the practical performance impact of the material thermal constant.6  In that study, a 
singlet was designed in several LWIR materials (including As40Se60 and Ge28Sb12Se60) and the MTF sensitivity to 
operating temperature was determined.  Though these differences in MTF performance did not match first-order 
theory, they were still significant in differentiating lens materials for use in LWIR imaging systems.  The singlet 
design case study found that As40Se60 was approximately half as sensitive to temperature as Ge28Sb12Se60.6 

In this paper, we seek to extend that design study to the case of 2-element lens systems.  Because there are many 
more design forms possible for a 2-element system, we began with a nominal design survey to determine the design 
forms that were least sensitive to tolerances for a given set of constant performance constraints.  This study 
considered a 9mm efl lens with an F-number of 1.0 and a 24deg FOV.  After the most tolerant design form was 
determined, independent of material, the materials were interchanged and re-optimized with the same performance 
constraints.  The designs were then compared for thermal sensitivity in the absence of any mechanical 
athermalization, the results of which are found in Table 4 and Figure 11. 

Table 4 - 2-Element Design Study with (left) material combinations, 
(center) nominal MTF, and (right) MTF over -40 to 85°C 

 

The first 4 designs of Table 4 show different design forms, all using the same Ge28Sb12Se60 material for both lens 
elements.  The differences in nominal performance (center 3 columns) are minor, though the temperature sensitivity 
differences are slightly more noticeable amongst these 4 designs.  Design 5 represents the As40Se60 version of the 
best 2-element design form.  Finally, the remaining designs represent hybrid combinations of different lens materials 
for each of the 2 elements in the system.  Only the designs containing ZnSe had a significantly lower nominal MTF, 
though only for the off-axis fields.  This is primarily due to the lower refractive index of ZnSe.  When examining the 
MTF over temperature in the right 3 columns, several groupings stand out.  The design using As40Se60 is by far the 
least sensitive to temperature.  Those hybrid designs containing As40Se60 show slightly higher sensitivity.  The 
designs containing Ge28Sb12Se60 but not As40Se60 are more sensitive still.  Finally, by far the most sensitive design is 
the one containing Ge, due to its dn/dT value of ~400ppm/°C, which is more than 5 times higher than the dn/dT of 
Ge28Sb12Se60.  These groupings are more easily seen in Figure 11, which plots the same data represented in Table 4. 
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